Search results for " Deep Learning"

showing 10 items of 30 documents

Leveraging Uncertainty Estimates to Improve Segmentation Performance in Cardiac MR

2021

International audience; In medical image segmentation, several studies have used Bayesian neural networks to segment and quantify the uncertainty of the images. These studies show that there might be an increased epistemic uncertainty in areas where there are semantically and visually challenging pixels. The uncertain areas of the image can be of a great interest as they can possibly indicate the regions of incorrect segmentation. To leverage the uncertainty information, we propose a segmentation model that incorporates the uncertainty into its learning process. Firstly, we generate the uncertainty estimate (sample variance) using Monte-Carlo dropout during training. Then we incorporate it …

[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]Bayesian deep learningCardiac MRI Segmentation[INFO.INFO-IM] Computer Science [cs]/Medical ImagingComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONUncertainty[INFO.INFO-IM]Computer Science [cs]/Medical ImagingMyocardial scar[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
researchProduct

A maChine and deep Learning Approach to predict pulmoNary hyperteNsIon in newbornS with congenital diaphragmatic Hernia (CLANNISH): Protocol for a re…

2021

Introduction Outcome predictions of patients with congenital diaphragmatic hernia (CDH) still have some limitations in the prenatal estimate of postnatal pulmonary hypertension (PH). We propose applying Machine Learning (ML), and Deep Learning (DL) approaches to fetuses and newborns with CDH to develop forecasting models in prenatal epoch, based on the integrated analysis of clinical data, to provide neonatal PH as the first outcome and, possibly: favorable response to fetal endoscopic tracheal occlusion (FETO), need for Extracorporeal Membrane Oxygenation (ECMO), survival to ECMO, and death. Moreover, we plan to produce a (semi)automatic fetus lung segmentation system in Magnetic Resonanc…

Pediatricsmedicine.medical_treatmentretrospective studyDiagnostic RadiologyCohort StudiesStudy ProtocolMathematical and Statistical TechniquesPregnancyMedicine and Health SciencesLung volumesMultidisciplinarymedicine.diagnostic_testRadiology and ImagingStatisticsQRSoftware EngineeringMagnetic Resonance ImagingPulmonary Imagingmachine learningObstetric ProceduresPhysical SciencesEngineering and TechnologyMedicineFemaleCohort studyComputer and Information Sciencesmedicine.medical_specialtyImaging TechniquesHypertension PulmonaryScienceSurgical and Invasive Medical ProceduresResearch and Analysis MethodsPulmonary hypertensionComputer SoftwareDiagnostic MedicineArtificial IntelligenceCongenital Diaphragmatic Hernia Pulmonary Ipertension Deep Learning protocolmedicineExtracorporeal membrane oxygenationHumansHerniaStatistical MethodsRetrospective StudiesFetal surgerybusiness.industrydiaphragmatic herniasegmentationInfant NewbornBiology and Life SciencesNeonatesCongenital diaphragmatic herniadeep learningRetrospective cohort studyMagnetic resonance imagingmedicine.diseaseSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Hernias Diaphragmatic CongenitalbusinessMathematicsDevelopmental BiologyForecasting
researchProduct

Automatic Quality Assessment of Cardiac MR Images with Motion Artefacts using Multi-task Learning and K-Space Motion Artefact Augmentation

2022

The movement of patients and respiratory motion during MRI acquisition produce image artefacts that reduce the image quality and its diagnostic value. Quality assessment of the images is essential to minimize segmentation errors and avoid wrong clinical decisions in the downstream tasks. In this paper, we propose automatic multi-task learning (MTL) based classification model to detect cardiac MR images with different levels of motion artefact. We also develop an automatic segmentation model that leverages k-space based motion artefact augmentation (MAA) and a novel compound loss that utilizes Dice loss with a polynomial version of cross-entropy loss (PolyLoss) to robustly segment cardiac st…

Quality ControlMotion Artefact[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]SegmentationDeep LearningCardiac MRI Multi-task Learning Quality Control Aleatoric Uncertainty Segmentation Deep Learning Motion ArtefactAleatoric UncertaintyCardiac MRIMulti-task Learning
researchProduct

Edge Computing-enabled Intrusion Detection for C-V2X Networks using Federated Learning

2022

Intrusion detection systems (IDS) have already demonstrated their effectiveness in detecting various attacks in cellular vehicle-to-everything (C-V2X) networks, especially when using machine learning (ML) techniques. However, it has been shown that generating ML-based models in a centralized way consumes a massive quantity of network resources, such as CPU/memory and bandwidth, which may represent a critical issue in such networks. To avoid this problem, the new concept of Federated Learning (FL) emerged to build ML-based models in a distributed and collaborative way. In such an approach, the set of nodes, e.g., vehicles or gNodeB, collaborate to create a global ML model trained across thes…

: Computer science [C05] [Engineering computing & technology]Federated deep learning[SPI] Engineering Sciences [physics]Intrusion detection systemEdge computing: Sciences informatiques [C05] [Ingénierie informatique & technologie]C-V2X
researchProduct

Deep learning for knowledge tracing in learning analytics: An overview

2021

Learning Analytics (LA) is a recent research branch that refers to methods for measuring, collecting, analyzing, and reporting learners’ data, in order to better understand and optimize the processes and the environments. Knowledge Tracing (KT) deals with the modeling of the evolution, during the time, of the students’ learning process. Particularly its aim is to predict students’ outcomes in order to avoid failures and to support both students and teachers. Recently, KT has been tackled by exploiting Deep Learning (DL) models and generating a new, ongoing, research line that is known as Deep Knowledge Tracing (DKT). This was made possible by the digitalization process that has simplified t…

Knowledge Tracing Machine Learning Deep Learning Learning Analytics Educational data Students skills
researchProduct

Automatic Segmentation Using a Hybrid Dense Network Integrated With an 3D-Atrous Spatial Pyramid Pooling Module for Computed Tomography (CT) Imaging

2020

Computed tomography (CT) with a contrast-enhanced imaging technique is extensively proposed for the assessment and segmentation of multiple organs, especially organs at risk. It is an important factor involved in the decision making in clinical applications. Automatic segmentation and extraction of abdominal organs, such as thoracic organs at risk, from CT images are challenging tasks due to the low contrast of pixel values surrounding other organs. Various deep learning models based on 2D and 3D convolutional neural networks have been proposed for the segmentation of medical images because of their automatic feature extraction capability based on large labeled datasets. In this paper, we p…

SegTHOR0209 industrial biotechnologyGeneral Computer ScienceComputer scienceFeature extractionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION02 engineering and technologyConvolutional neural network020901 industrial engineering & automationPyramid0202 electrical engineering electronic engineering information engineeringMedical imagingGeneral Materials ScienceSegmentationPyramid (image processing)3D deep learning modelsPixelbusiness.industryDeep learningGeneral EngineeringPattern recognition3D-atrous spatial pyramid pooling (ASPP)Feature (computer vision)3D volumetric segmentation020201 artificial intelligence & image processinglcsh:Electrical engineering. Electronics. Nuclear engineeringArtificial intelligencebusinesslcsh:TK1-9971IEEE Access
researchProduct

Deep learning architectures for prediction of nucleosome positioning from sequences data

2018

Abstract Background Nucleosomes are DNA-histone complex, each wrapping about 150 pairs of double-stranded DNA. Their function is fundamental for one of the primary functions of Chromatin i.e. packing the DNA into the nucleus of the Eukaryote cells. Several biological studies have shown that the nucleosome positioning influences the regulation of cell type-specific gene activities. Moreover, computational studies have shown evidence of sequence specificity concerning the DNA fragment wrapped into nucleosomes, clearly underlined by the organization of particular DNA substrings. As the main consequence, the identification of nucleosomes on a genomic scale has been successfully performed by com…

0301 basic medicineComputer scienceCellBiochemistrychemistry.chemical_compound0302 clinical medicineStructural Biologylcsh:QH301-705.5Nucleosome classificationSequenceSettore INF/01 - InformaticabiologyApplied MathematicsEpigeneticComputer Science ApplicationsChromatinNucleosomesmedicine.anatomical_structurelcsh:R858-859.7EukaryoteDNA microarrayDatabases Nucleic AcidComputational biologySaccharomyces cerevisiaelcsh:Computer applications to medicine. Medical informatics03 medical and health sciencesDeep LearningmedicineNucleosomeAnimalsHumansEpigeneticsMolecular BiologyGeneBase Sequencebusiness.industryDeep learningResearchReproducibility of Resultsbiology.organism_classificationYeastNucleosome classification Epigenetic Deep learning networks Recurrent neural networks030104 developmental biologylcsh:Biology (General)chemistryRecurrent neural networksROC CurveDeep learning networksArtificial intelligenceNeural Networks Computerbusiness030217 neurology & neurosurgeryDNABMC Bioinformatics
researchProduct

Fake News Spreaders Detection: Sometimes Attention Is Not All You Need

2022

Guided by a corpus linguistics approach, in this article we present a comparative evaluation of State-of-the-Art (SotA) models, with a special focus on Transformers, to address the task of Fake News Spreaders (i.e., users that share Fake News) detection. First, we explore the reference multilingual dataset for the considered task, exploiting corpus linguistics techniques, such as chi-square test, keywords and Word Sketch. Second, we perform experiments on several models for Natural Language Processing. Third, we perform a comparative evaluation using the most recent Transformer-based models (RoBERTa, DistilBERT, BERT, XLNet, ELECTRA, Longformer) and other deep and non-deep SotA models (CNN,…

Settore ING-INF/05 - Sistemi Di Elaborazione Delle Informazionitext classificationcorpus linguisticSettore ING-INF/03 - Telecomunicazionifake newTwitterauthor profilingconvolutional neural networkdeep learningNatural Language Processing (NLP)user classificationfake news; misinformation; Natural Language Processing (NLP); transformers; Twitter; convolutional neural networks; text classification; deep learning; machine learning; user classification; author profiling; corpus linguistics; linguistic analysismachine learningtransformermisinformationlinguistic analysisInformation Systems
researchProduct

McRock at SemEval-2022 Task 4: Patronizing and Condescending Language Detection using Multi-Channel CNN, Hybrid LSTM, DistilBERT and XLNet

2022

In this paper we propose four deep learning models for the task of detecting and classifying Patronizing and Condescending Language (PCL) using a corpus of over 13,000 annotated paragraphs in English. The task, hosted at SemEval-2022, consists of two different subtasks. The Subtask 1 is a binary classification problem. Namely, given a paragraph, a system must predict whether or not it contains any form of PCL. The Subtask 2 is a multi-label classification task. Given a paragraph, a system must identify which PCL categories express the condescension. A paragraph might contain one or more categories of PCL. To face with the first subtask we propose a multi-channel Convolutional Neural Network…

Settore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniNLP Deep Learning Machine Learning XLNet CNN DistilBERT PCLProceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)
researchProduct

Using Polynomial Loss and Uncertainty Information for Robust Left Atrial and Scar Quantification and Segmentation

2022

Automatic and accurate segmentation of the left atrial (LA) cavity and scar can be helpful for the diagnosis and prognosis of patients with atrial fibrillation. However, automating the segmentation can be difficult due to the poor image quality, variable LA shapes, and small discrete regions of LA scars. In this paper, we proposed a fully-automatic method to segment LA cavity and scar from Late Gadolinium Enhancement (LGE) MRIs. For the loss functions, we propose two different losses for each task. To enhance the segmentation of LA cavity from the multicenter dataset, we present a hybrid loss that leverages Dice loss with a polynomial version of cross-entropy loss (PolyCE). We also utilize …

[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]SegmentationPolyLossUncertaintyCardiac MRI Late Gadolinium Enhancement MRI Left Atrium Scar quantification Segmentation Deep learning PolyLoss UncertaintyDeep learningCardiac MRILeft AtriumScar quantificationLate Gadolinium Enhancement MRI
researchProduct